Parameterized Algorithms and Hardness Results for Some Graph Motif Problems

نویسندگان

  • Nadja Betzler
  • Michael R. Fellows
  • Christian Komusiewicz
  • Rolf Niedermeier
چکیده

We study the NP-complete Graph Motif problem: given a vertex-colored graph G = (V, E) and a multiset M of colors, does there exist an S ⊆ V such that G[S] is connected and carries exactly (also with respect to multiplicity) the colors in M? We present an improved randomized algorithm for Graph Motif with running time O(4.32 · |M | · |E|). We extend our algorithm to list-colored graph vertices and the case where the motif G[S] needs not be connected. By way of contrast, we show that extending the request for motif connectedness to the somewhat “more robust” motif demands of biconnectedness or bridgeconnectedness leads to W[1]-complete problems. Actually, we show that the presumably simpler problems of finding (uncolored) biconnected or bridge-connected subgraphs are W[1]-complete with respect to the subgraph size. Answering an open question from the literature, we further show that the parameter “number of connected motif components” leads to W[1]-hardness even when restricted to graphs that are paths.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Defensive Alliances in Graphs of Bounded Treewidth

A set S of vertices of a graph is a defensive alliance if, for each element of S, the majority of its neighbors is in S. The problem of finding a defensive alliance of minimum size in a given graph is NP-hard and there are polynomial-time algorithms if certain parameters are bounded by a fixed constant. In particular, fixed-parameter tractability results have been obtained for some structural p...

متن کامل

Parameterized Complexity Results for 1-safe Petri Nets

We associate a graph with a 1-safe Petri net and study the parameterized complexity of various problems with parameters derived from the graph. With treewidth as the parameter, we give W[1]-hardness results for many problems about 1-safe Petri nets. As a corollary, this proves a conjecture of Downey et. al. about the hardness of some graph pebbling problems. We consider the parameter benefit de...

متن کامل

Fully polynomial FPT algorithms for some classes of bounded clique-width graphs

Parameterized complexity theory has enabled a refined classification of the difficulty of NPhard optimization problems on graphs with respect to key structural properties, and so to a better understanding of their true difficulties. More recently, hardness results for problems in P were achieved using reasonable complexity theoretic assumptions such as: Strong Exponential Time Hypothesis (SETH)...

متن کامل

Using Neighborhood Diversity to Solve Hard Problems

Parameterized algorithms are a very useful tool for dealing with NP-hard problems on graphs. Yet, to properly utilize parameterized algorithms it is necessary to choose the right parameter based on the type of problem and properties of the target graph class. Tree-width is an example of a very successful graph parameter, however it cannot be used on dense graph classes and there also exist prob...

متن کامل

Parameterized complexity: A framework for systematically confronting computational intractability

In this paper we give a programmatic overview of parame-terized computational complexity in the broad context of the problem of coping with computational intractability. We give some examples of how xed-parameter tractability techniques can deliver practical algorithms in two diierent ways: (1) by providing useful exact algorithms for small parameter ranges, and (2) by providing guidance in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008